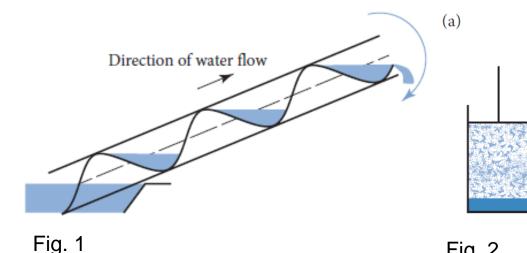
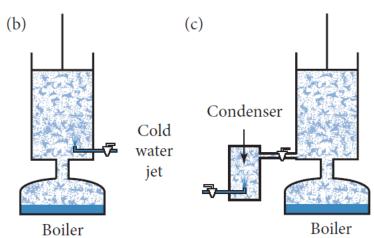



#### John Andrews & Nick Jelley

#### Lecture 1:


Introduction to Energy Science

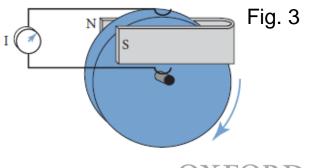
# The Challenge




### History of energy technology

BC Water engineering: Archimedes screw (Fig. 1), Aqueducts, Waterwheels AD1000 Waterwheels common throughout western Europe but very inefficient 1644 Mercury barometer (Torricelli): led to better understanding of vacuum 1650 Air pump (von Guericke) 1690 Papin steam engine (Fig. 2a) steam used to push piston, retraction very slow 1712 **Newcomen steam engine** (Fig. 2b) cold water jet squirted into piston chamber 1769 Watt steam engine (Fig. 2c) steam condensed in separate chamber








# History of energy technology (contd.)

| 1799 | Volta electric battery: electrochemical cell, copper and zinc electrodes in electrolyte |
|------|-----------------------------------------------------------------------------------------|
|      | of sulfuric acid                                                                        |
| 1824 | Carnot proved maximum possible efficiency of heat engine depends only on hot and        |
|      | cold temperatures between which it operates, independent of working fluid               |
| 1832 | Fourneyron water turbine, much more efficient than early designs                        |
| 1884 | Parsons rotary steam engine                                                             |
| 1831 | Faraday's laws of electromagnetic induction (Fig. 3) current generated in closed        |
|      | circuit by time-varying magnetic field and also in a loop of wire when moved through    |
|      | stationary magnetic field, leading to electric motors, dynamos                          |
| 1860 | Swan electric light bulb                                                                |

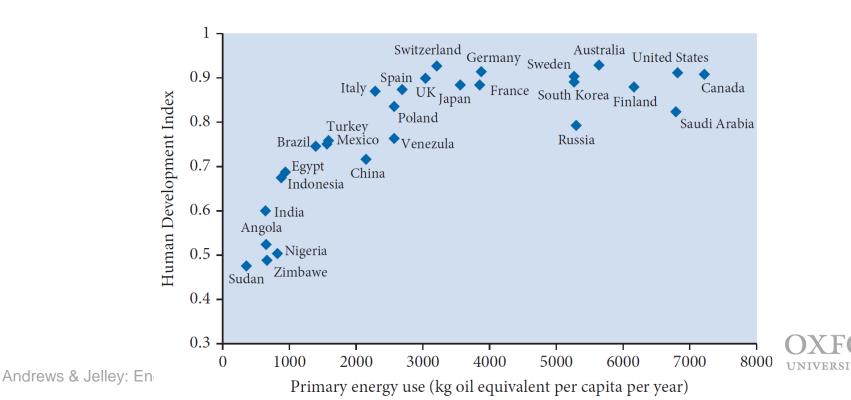
Otto's 4-stroke internal combustion engine



1876

### History of energy technology (contd.)

| 1879  | incandescent lamp (Edison)                                            |
|-------|-----------------------------------------------------------------------|
| 1880  | first electric power distribution system (Edison)                     |
| 1881  | first power station (Holborn Viaduct, London), Edison                 |
| 1886  | first modern car (Benz)                                               |
| 1895  | first hydroelectric plant (Niagara Falls), used Fourneyron turbines   |
| 1903  | first controlled powered flight (Wright brothers)                     |
| 1956  | first nuclear power station (Calder Hall, UK)                         |
| 1950s | development of silicon photovoltaic cells, around 6% efficient        |
| 1960s | development of light emitting diodes (LEDs), very efficient           |
| 1970s | R&D of alternative energy, following oil price shocks, including wind |
|       | power, wave power, biomass, geothermal power                          |
| 1980  | rechargeable lithium-ion battery (Goodenough)                         |

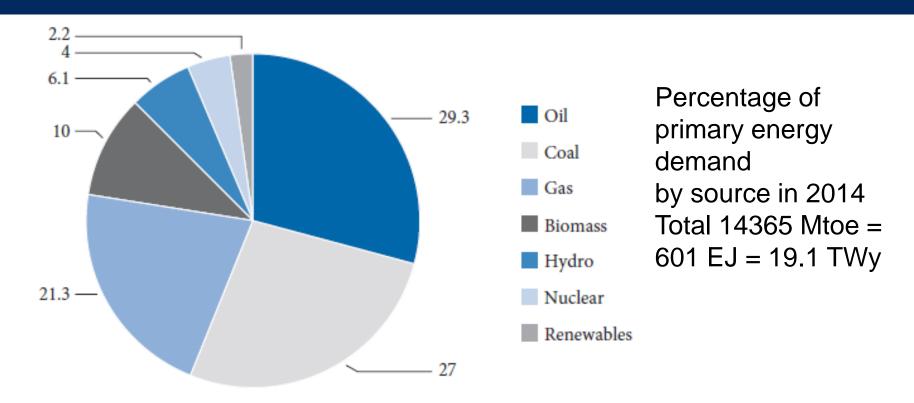



#### Power scales

| Device                                  | Power (kW)        |
|-----------------------------------------|-------------------|
| Treadwheel (AD 0)                       | 0.2               |
| Tour de France cyclist (uphill)         | 0.5               |
| Strong horse                            | 0.7               |
| Newcomen steam engine (1712)            | 4                 |
| Fourneyron water turbine (1832)         | 30                |
| Parsons' steam turbine (1900)           | $10^3$            |
| Smith-Putnam wind turbine (1942)        | $1.3 \times 10^3$ |
| Boeing 747 gas turbine (1969)           | $6 \times 10^4$   |
| Sizewell B nuclear power station (1992) | $1.2 \times 10^6$ |
| Drax coal power station (1986)          | $3.9 \times 10^6$ |

#### Human Development Index (HDI) and Primary Energy Consumption

The Human Development Index (HDI) is a measure of the standard of living. There is a strong correlation for low values of the HDI of a country with the energy use per capita. There is a large spread in energy consumption per capita between different highly developed countries.

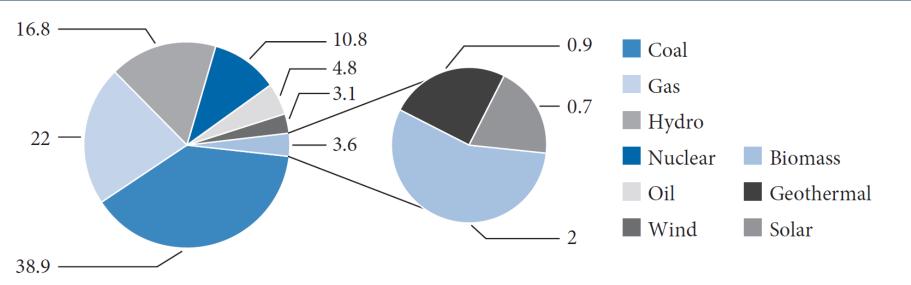



### Energy intensity and global energy trend

- Energy intensity (amount of energy per unit of GDP) is expected to decrease globally over the next 20 years and energy efficiency is expected to improve.
- As an agricultural society becomes industrialized and more developed its energy intensity increases, but as more service sector jobs grow and technology develops the energy intensity falls as more high value commodities that require less energy are manufactured.
- Global energy demand is predicted to increase by about third by 2035, with electricity generation by two thirds.
   But still 17% (1.2 billion) of global population without electricity



# Primary energy demand




 Primary energy demand is predicted to remain approximately constant in OECD countries over the period up to 2035 at ~230 EJ, while growing significantly in non-OECD countries. Traditional biomass is estimated as

10% throughout this period.



#### Electricity generation by fuel



**Fig. 1.8** Electricity generation (%) by fuel in 2014 (total 22 400 TWh = 2.56 TWy = 80.6 EJ) (TSP).

 Final energy demand, which is primary energy less the energy lost in conversion to forms utilized by end users, such as electricity and refined fuels, is currently about 2/3 of primary energy consumption, i.e. ~400 EJ



#### Primary energy trends

- By 2035, the GDP is expected to more than double, with China and India together providing almost half and the OECD countries about a quarter of the growth.
- The global population is expected to increase by ~1.5 billion, with Africa accounting for around half the increase, and most of the rest in non-OECD countries.

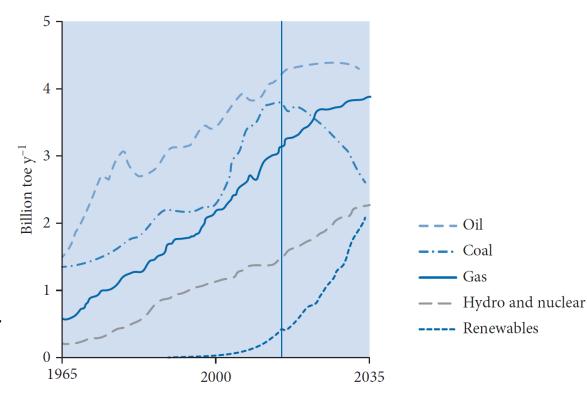



Fig. 1.7 Primary energy (excl. biomass) and possible projection to 2035 (BP2016).



#### Primary energy trends

- China's economy has been growing rapidly over the last decade. Its
  combustion of coal has increased significantly, but its energy demand is
  expected to slow down over the next two decades.
- The pollution and high carbon intensity of coal is causing coal to be displaced by gas and renewables.
- Shale oil is making the US self-sufficient in oil, but Asia is increasingly reliant on oil imports. Shale gas is expected to grow, as is nuclear and hydro generation (mainly in Asia).
- The largest growth is expected in renewables throughout the world.



#### Fuel distribution

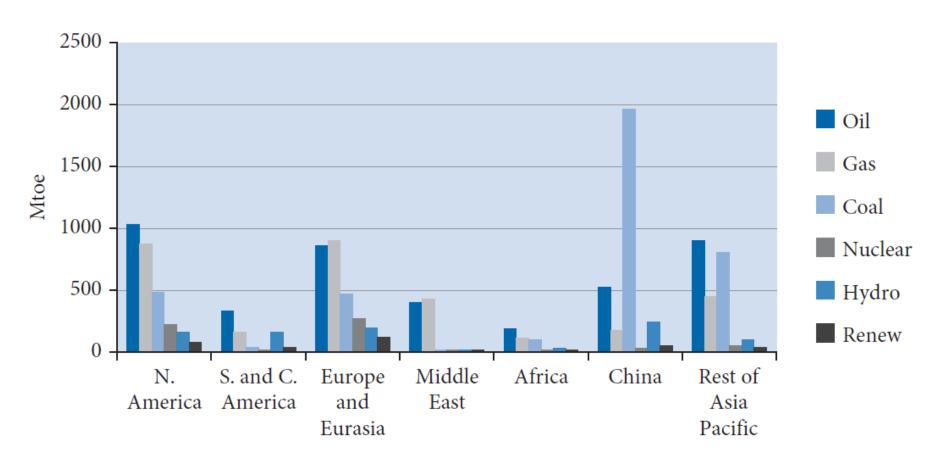



Fig. 1.9 The distribution of energy fuel by region in 2014 (BP).



# Global trend of CO<sub>2</sub> emissions

Global emissions of CO<sub>2</sub> from fossil fuels have **stayed constant** at 32 GtCO<sub>2</sub> per year since 2013, indicating a decoupling of emissions and economic growth.

This is coming about through **fuel switching** to sources with lower carbon dioxide emissions per unit of energy (gas is about half that of coal), the **increase in renewables**, particularly in wind and solar PV, and **energy savings**.

Continuing such CO<sub>2</sub> emissions would put the world at risk of significant climate change owing to the associated global warming.

